	[image: image12.jpg]
	Headquarters

	
	Unitronics (1989) (R"G) Ltd.

Unitronics Building, Airport City

P.O.B. 300, Ben Gurion Airport, Israel 70100

Tel: + 972 (3) 977 8888 Fax: + 972 (3) 977 8877

Remote Operator User Control
21.
Introduction

22.
System requirements

33.
Package misc information:

44.
Properties

55.
Functions

66.
Events

77.
Getting Started

1. Introduction
Combined with the Unitronics Communication Driver for .Net, the new Remote Operator User Control for .Net gives the user the tools to integrate a Remote Operator control into his .Net application or even create his own Remote Operator application that matches his needs.

2. System requirements
· One of the following OSes

· Windows XP (x86 or x64)

· Windows Vista (x86 or x64)

· Windows Server 2003 (x86 or x64)
· .Net framework 3.5
· Visual Studio 2003 or later
3. Package misc information:

The package includes:
· Unitronics.ComDriver.DLL
· Unitronics.RemoteOperator.dll
· Xceed.Compression.dll
· Xceed.Compression.Formats.dll
· Xceed.FileSystem.dll
· Xceed.Zip.dll
(Where the Xceed files are required for the user control to work properly)

The remote operator user control includes the following properties:

· All the .Net Control properties

· public en_ViewMode ViewMode
· public InterpolationMode InterpolationMode
· public PLC Plc
· public bool UseCacheFile
The remote operator user control includes the following functions:

· All the .Net Control functions

· public void Run()
· public void Stop()
· public void ImportCacheFile(string filePath, string overwrite)
The remote operator user control includes the following events:

· All the .Net Control events
· public event EventHandler OnStop(this, RemoteDisplayStopEventArgs e)

4. Properties

ViewMode – Selects the view mode while the Remote Display is running: "Display with Case" or "Display Only"
InterpolationMode – Select the interpolation mode that will be used while the remote display image is being stretched to fit user control area.

Plc – Sets or Gets the PLC object on the remote operator user control. This object must be set to a valid PLC object before calling the Run() function.

UseCacheFile – A Boolean property which decide a cache file that was added using "ImportCacheFile" method should be used.

When adding a cache file using "ImportCacheFile", some of the information about the file is being saved in a XML file. When calling Run(), Remote operator will search for the a matching cache file from the XML.

If a matching cache file was found and UseCacheFile is set to true then Remote operator will use that cache file.

5. Functions

Run() – Start the PLC display read and draw. Requires a valid PLC object in order to be able to communicate with the PLC.

Stop() – Stops the read and draw on the user control surface

ImportCacheFile – Imports a cache file into the cache files directory and adds it to the list of cache files stored in a XML.

There are currently 2 types of cache files extensions supported:

· *.ura – for V120, V230, V260, V280, V290, V530

· *.urc – for V350, V570
When calling RemoteDisplay.Run(), it may throw an exception if it did not success to finish the Run sequence. This can happen when the PLC object is null, Remote operator failed to communicate with the PLC, the PLC model is not supported etc…
(So make sure you wrap the Run with Try Catch)

6. Events

After the Run sequence has finished, the remote displays control keeps refreshing itself.

Since catching exceptions on the a asynchronous process is impossible (without trying to catch unhandled exceptions off course), then when an exception happens on the asynchronous process, the Remote Display control stops (Just like when calling to Stop()), and the user control drawing surface becomes blank.

Whenever the Remote Display is switching from Run to Stop, the following event will be raised:

public event EventHandler OnStop(this, RemoteDisplayStopEventArgs e)

Where RemoteDisplayStopEventArgs has the structure:
public Exception Exception;

public StopReason StopReason;
If the Remote Display was stopped because of an exception, then the Exception on the Event Args will contain the exception, and the StopReason will be Exception.

If the Remote Display was stopped because the user has requested a stop then the exception will be null and the StopReason will be UserStop.
7. Getting Started
· Extract the files into a directory

· Start Visual Studio 2008

· Create a new Windows Forms Application
Open the toolbox, select group you want to add the user control into, right click and select "Choose Items":

[image: image1.png]
On the new window that will be opened, click on Browse, browse to the directory where you extracted the files to, and select the Unitronics.RemoteOperator.dll:

[image: image2.png]
You should see that the user control was added to the list:

[image: image3.png]
Click on OK… you should now see the RemoteOperator User Control icon on the toolbox:

[image: image4.png]
Choose the user control and place it on the form (You will see a white rectangle).

Resize it, anchor it (if you like), resize the form if needed, etc…

[image: image5.png]
Add a reference to the ComDrive:

[image: image6.png]
[image: image7.png]
Now let's start adding buttons, etc to the form:
[image: image8.png]
Now we just need to add the code to the form itself and to the buttons / Comboboxes.

We'll start with adding "using namespaces" to the form:

using Unitronics.ComDriver;

using Unitronics.RemoteOperator;
using System.Drawing.Drawing2D;
Then we add a modal PLC object to the form:
 public partial class Form1 : Form

 {

 private PLC m_Plc;

 bool needToDisconnect = false;

 bool isRunning = false;

 public Form1()

 {

 InitializeComponent();

 }

 }
Fill the Comboboxes from the enums:

 private void Form1_Load(object sender, EventArgs e)

 {

 cmbViewMode.DataSource = System.Enum.GetNames(typeof(en_ViewMode));

 cmbInterpolation.DataSource = System.Enum.GetNames(typeof(InterpolationMode));

 cmbInterpolation.SelectedItem = InterpolationMode.NearestNeighbor.ToString();

 Disconnect.Enabled = false;

 Run.Enabled = false;

 Stop.Enabled = false;

}
Create a channel and get a PLC Object on connect. Then set the plc object on the remote Display user control:
 private void Connect_Click(object sender, EventArgs e)

 {

 Serial serial = new Serial(SerialPortNames.COM1, BaudRate.BR57600, 3, 3000, DataBits.DB8, System.IO.Ports.Parity.None, System.IO.Ports.StopBits.One);

 try

 {

 PLC plc = PLCFactory.GetPLC(serial, 0);

 m_Plc = plc;

 remoteDisplay1.Plc = m_Plc;

 Disconnect.Enabled = true;

 Run.Enabled = true;

 Stop.Enabled = true;

 Connect.Enabled = false;

 }

 catch (Exception ex)

 {

 System.Windows.Forms.MessageBox.Show(ex.Message);

 }

}
Handle the Disconnect as well:
private void Disconnect_Click(object sender, EventArgs e)

{

 remoteDisplay1.Stop();

 needToDisconnect = true;
 if (!isRunning)

 {

 m_Plc.Disconnect();

 Run.Enabled = false;

 Stop.Enabled = false;

 Connect.Enabled = true;

 Disconnect.Enabled = false;

 }

}

The same applies to all the other buttons and comboboxes:

private void Run_Click(object sender, EventArgs e)

{

 try

 {

 remoteDisplay1.Run();

 isRunning = true;

 }

 catch (Exception ex)

 {

 System.Windows.Forms.MessageBox.Show(ex.Message);

 }

}

private void Stop_Click(object sender, EventArgs e)

{

 remoteDisplay1.Stop();

}

private void cmbViewMode_SelectedIndexChanged(object sender, EventArgs e)

{

 remoteDisplay1.ViewMode = (en_ViewMode)Enum.Parse(typeof(en_ViewMode), cmbViewMode.SelectedText);

}

private void cmbInterpolation_SelectedIndexChanged(object sender, EventArgs e)

{

 remoteDisplay1.InterpolationMode = (InterpolationMode)Enum.Parse(typeof(InterpolationMode), cmbInterpolation.SelectedText);

}

Now we would like to catch the OnStop event (So we could do some stuff on the Stop, like disconnecting if needed, showing MessageBox if the stop was due to an exception, disable and enable buttons etc):
After the "remoteDisplay1.Run();" we will add the following line:

remoteDisplay1.OnStop += new RemoteDisplay.RemoteDisplayStopDelegate(remoteDisplay1_OnStop);
Now we need to implement the: remoteDisplay1_OnStop:

private void remoteDisplay1_OnStop(object Sender, RemoteDisplayStopEventArgs e)

{

 if (needToDisconnect)

 {

 try

 {

 m_Plc.Disconnect();

 }

 catch { }

 }

 Run.Enabled = false;

 Stop.Enabled = false;

 Connect.Enabled = true;

 Disconnect.Enabled = false;

 isRunning = false;

 remoteDisplay1.OnStop -= new RemoteDisplay.RemoteDisplayStopDelegate(remoteDisplay1_OnStop);

 if (e.StopReason == StopReason.Exception)

 {

 System.Windows.Forms.MessageBox.Show(e.Exception.Message);

 }

}
Now all you are left to do it connect to a PLC and click on Run. The results are:

[image: image9.png]
[image: image10.png]
[image: image11.png]
	From: Itai Sargani
	e-mail: itai.sargani@unitronics.com
	Page: 1 Of: 16
	Size: 150016
	eSignature: 0-0-46 (IS)
	Date Created: 19-Dec-02

	File name:
	C:\Documents and Settings\itais\Application Data\Microsoft\Templates\Normal.dot
	Date Printed: 18-Dec-02

[image: image13.png]

[image: image12.jpg][image: image13.png]