Power supply

12VDC or 24VDC

Permissible range

10.2VDC to 28.8VDC with less than 10% ripple

Maximum current consumption

- 230mA@24VDC (pnp inputs)
- 310mA@24VDC (nnp inputs)
- 330mA@12VDC (pnp inputs)
- 360mA@12VDC (nnp inputs)

Digital inputs

10 pnp (source) or nnp (sink) inputs. See Note 1.

Nominal input voltage

12VDC or 24VDC. See Notes 2 and 3.

Input voltages for pnp (source):

- For 12VDC: 0-3VDC for Logic ‘0’
- For 24VDC: 8-15.6VDC for Logic ‘0’

Input voltages for nnp (sink):

- For 12VDC: 8-15.6VDC/1.2mA for Logic ‘0’
- For 24VDC: 17-28.8VDC/2mA for Logic ‘0’

Input current

- 4mA@12VDC
- 8mA@24VDC

Input impedance

3KΩ

Response time

10ms typical

Galvanic isolation

None

Input cable length

Up to 100 meters, unshielded

High-speed counter

Specifications below apply when inputs are wired for use as a high-speed counter input/shaft encoder. See Notes 4 and 5.

Resolution

32-bit

Input frequency

10kHz max.

Minimum pulse

40µs

Note:

To avoid electromagnetic interference, mount the controller in a metal panel/cabinet and earth the power supply. Earth the power supply signal to the metal using a wire whose length does not exceed 10cm. If your conditions do not permit this, do not earth the power supply.

Warnings:

- Unused pins should not be connected. Ignoring this directive may damage the controller.
- Improper use of this product may severely damage the controller.
- Refer to the controller’s User Guide regarding wiring considerations.
- Before using this product, it is the responsibility of the user to read the product’s User Guide and all accompanying documentation.
Analog Inputs
- Two 10-bit, multi-range inputs: 0-10V, 0-20mA, 4-20mA
- Conversion method: Successive approximation
- Input impedance: >100KΩ for voltage, 500Ω for current
- Galvanic isolation: None
- Resolution (except 4-20mA): 10-bit (1024 units)
- Resolution at 4-20mA: 204 to 1023 (2^10 units)
- Conversion time: According to filter
- Absolute max. rating: ±15V
- Full scale error: ±2 LSB
- Linearity error: ±2 LSB
- Status indication: Yes, see Note

Note:
The analog value can also indicate when the input is functioning out of range.
If an analog input deviates above the permissible range, its value will be 1024.

Voltage / Current connection

Current connection

Digital outputs
- 8 relay outputs, 230VAC/12/24VDC
- Output type: SPST-NO relay
- Type of relay: Takamisawa (Fujitsu) JY-12H-K, or NAIS (Matsushita) JQ1A-12V or OMRON G6B-1114P-12VDC
- Isolation: by relay
- Output current: 5A max. (resistive load)
- 1A max. (inductive load)
- Max. frequency: 0.5Hz (at maximum rated load)
- Contact protection: External precautions required

Relay Outputs

Graphical Display
- STN, LCD display
- Illumination backlight: LED, yellow-green, software-controlled
- Display resolution: 128x64 pixels

Keypad
- Sealed membrane
- Number of keys: 16

Program
- Application memory: 448K
- Memory Bits (coils): 2048
- Memory Integers (registers): 1600
- Long Integers (32 bit): 256
- Double Word (32 bit unsigned): 64
- Floats: 24
- Timers: 192
- Counters: 24
- Data Tables: 120K (RAM) / 64K (FLASH)
- HMI displays: Up to 255
- Execution time: 0.8μs for bit operations

RS232/RS485 serial ports
- Used for:
 - Application Download/Upload
 - Application Testing (Debug)
 - Connect to GSM or standard telephone modem:
 - Send/receive SMS messages
 - Remote access programming
 - RS485 Networking
- RS232 (see note): 2 ports
- Galvanic isolation: None
- Voltage limits: ±20V
- RS485 (see note): 2 ports
- Input voltage: -7 to +12V differential max.
- Cable type: Shielded twisted pair, in compliance with EIA RS485
- Galvanic isolation: None
- Baud rate: 110 – 57600 bps
- Nodes: Up to 32

Note:
RS232/RS485 is determined by jumper settings and wiring.
Refer to the controller’s User Guide regarding communications.

I/O expansion port
- Up to 128 additional I/Os, including digital & analog I/Os, RTD and more.

CANbus port
- Up to 63 nodes
- Baud rate range: 20Kbps - 1Mbps
- Cable length: Up to 150m for 12VDC network
- Up to 1000m for 24VDC network

CANbus connection

Miscellaneous
- Clock (RTC): Real-time clock functions (Date and time).
- Battery back-up: 7 years typical battery back-up for RTC and system data.
- Battery: Coin type, 3V lithium battery, CR2450
- Weight: 320g (11.3 oz.)
- Operational temperature: 0 to 50°C (32 to 122°F)
- Storage temperature: -20 to 60°C (-4 to 140°F)
- Relative Humidity (RH): 5% to 95% (non-condensing)
- Mounting method: DIN-rail mounted (IP20/NEMA1)
 Panel mounted (IP65/NEMA4X)
The tables below show how to set a specific jumper to change the functionality of the controller. To open the controller and access the jumpers, refer to the directions at the end of these specifications.

Important:
Incompatible jumper settings and wiring connections may severely damage the controller.

JP1
Digital inputs type

<table>
<thead>
<tr>
<th>To use as</th>
<th>JP1</th>
</tr>
</thead>
<tbody>
<tr>
<td>npn (sink)</td>
<td>A</td>
</tr>
<tr>
<td>pnp (source)*</td>
<td>B</td>
</tr>
</tbody>
</table>

JP5, JP6
Power supply voltage

<table>
<thead>
<tr>
<th>Range</th>
<th>JP5</th>
<th>JP6</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.2 to 15.6VDC</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>15.6 to 28.8VDC*</td>
<td>B</td>
<td>B</td>
</tr>
</tbody>
</table>

JP2
Digital inputs voltage

<table>
<thead>
<tr>
<th>To use as</th>
<th>JP2</th>
</tr>
</thead>
<tbody>
<tr>
<td>12VDC</td>
<td>A</td>
</tr>
<tr>
<td>24VDC*</td>
<td>B</td>
</tr>
</tbody>
</table>

JP3, JP4
Analog inputs type

<table>
<thead>
<tr>
<th>To use as</th>
<th>JP3 for analog input #0</th>
<th>JP4 for analog input #1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voltage input*</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>Current input</td>
<td>B</td>
<td>B</td>
</tr>
</tbody>
</table>

*Default factory setting

In this figure, the jumper settings will cause the controller to function as follows:
- Digital inputs: npn, 24VDC inputs
- Analog input #0: Voltage input
- Analog input #1: Current input
- Power supply: 24VDC

Opening the controller’s enclosure

1. Turn power off before opening the controller.
2. Locate the 4 slots on the sides of the enclosure.
3. Using the blade of a flat-bladed screwdriver, gently pry off the back of the controller as shown in the figure below, exposing the controller’s board.

Unitronics reserves the right to revise this publication from time to time and to amend its contents and related hardware and software at any time. Technical updates (if any) may be included in subsequent editions (if any). Unitronics product sold hereunder can be used with certain products of other manufacturers at the user’s sole responsibility.