Power supply
- 24VDC
- Permissible range: 20.4VDC to 28.8VDC with less than 10% ripple
- Maximum current consumption: 290mA @ 24VDC

Digital inputs
- 22 pnp (source) or npn (sink) inputs. See Notes 1 and 2
- Nominal input voltage: 24VDC. See Note 3.
- Input voltages for pnp (source):
 - 0-5VDC for Logic ‘0’
 - 17-28.8VDC for Logic ‘1’
- Input voltages for npn (sink):
 - 17-28.8VDC/1mA for Logic ‘0’
 - 0-5VDC/3mA for Logic ‘1’
- Input current: 3.7mA @ 24VDC
- Input impedance: 6.5kΩ
- Response time (except high-speed inputs): 10mS typical
- Galvanic isolation: None
- Input cable length: Up to 100 meters, unshielded

High-speed counter
- Specifications below apply when inputs are wired for use as a high-speed counter/encoder. See Notes 4 and 5.
 - Resolution: 32-bit
 - Input freq.: 10kHz max.
 - Minimum pulse: 40μs

Warning:
- Unused pins should not be connected. Ignoring this directive may damage the controller.
- Improper use of this product may severely damage the controller.
- Refer to the controller's User Guide regarding wiring considerations.
- Before using this product, it is the responsibility of the user to read the product's User Guide and all accompanying documentation.
Analog Inputs

<table>
<thead>
<tr>
<th>Feature</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analog Inputs</td>
<td>Two 10-bit, multi-range inputs: 0-10V, 0-20mA, 4-20mA See Note 1 on page 1</td>
</tr>
<tr>
<td>Conversion method</td>
<td>Successive approximation</td>
</tr>
<tr>
<td>Input impedance</td>
<td>>150KΩ for voltage 243Ω for current</td>
</tr>
<tr>
<td>Galvanic isolation</td>
<td>None</td>
</tr>
<tr>
<td>Resolution (except 4-20mA)</td>
<td>10-bit (1024 units)</td>
</tr>
<tr>
<td>Resolution at 4-20mA</td>
<td>204 to 1023 (820 units)</td>
</tr>
<tr>
<td>Conversion time</td>
<td>Synchronized to scan time</td>
</tr>
<tr>
<td>Absolute max. rating</td>
<td>±15V/30mA</td>
</tr>
<tr>
<td>Full scale error</td>
<td>± 2 LSB</td>
</tr>
<tr>
<td>Linearity error</td>
<td>± 2 LSB</td>
</tr>
<tr>
<td>Status indication</td>
<td>Yes, See Note</td>
</tr>
</tbody>
</table>

Relay Outputs

<table>
<thead>
<tr>
<th>Feature</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Relay outputs</td>
<td>12 relay (in 3 groups) See Note</td>
</tr>
<tr>
<td>Output type</td>
<td>SPST-NO (Form A)</td>
</tr>
<tr>
<td>Type of relay</td>
<td>Tyco PCN-124D3MHZ or compatible</td>
</tr>
<tr>
<td>Isolation</td>
<td>by relay</td>
</tr>
<tr>
<td>Output current (resistive load)</td>
<td>3A max per output 8A max total for common</td>
</tr>
<tr>
<td>Rate voltage</td>
<td>250VAC / 30VDC</td>
</tr>
<tr>
<td>Minimum load</td>
<td>1mA@5VDC</td>
</tr>
<tr>
<td>Life expectancy</td>
<td>100k operations at maximum load</td>
</tr>
<tr>
<td>Response time</td>
<td>10ms (typical)</td>
</tr>
<tr>
<td>Contact protection</td>
<td>External precautions required (see below)</td>
</tr>
</tbody>
</table>

Voltage connection

- **Notes:**
 a. Shields should be connected at the signals’ source.
 b. The 0V signal of the analog input must be connected to the controller’s 0V.

Current connections

- **Notes:**
 a. Shields should be connected at the signals’ source.
 b. The 0V signal of the analog input must be connected to the controller’s 0V.

Increasing Contact Life Span

To increase the life span of the relay output contacts and protect the device from potential damage by reverse EMF, connect:

- a clamping diode in parallel to each inductive DC load.
- an RC snubber circuit in parallel with each inductive AC load.
Graphic Display
- STN, LCD display

Illumination backlight
- LED, yellow-green, software-controlled

Display resolution
- 128x64 pixels

Keypad
- Sealed membrane
- Number of keys: 16

Program
- Application memory: 448K
- Memory Bits (coils): 4096
- Memory Integers (registers): 2048
- Long Integers (32 bit): 256
- Double Word (32 bit unsigned): 64
- Floats: 24
- Timers: 192
- Counters: 24
- Data Tables: 120K (RAM) / 64K (FLASH)
- HMI displays: Up to 255
- Execution time: 0.8μs for bit operations

RS232/RS485 serial ports
- Used for:
 - Application Download/Upload
 - Application Testing (Debug)
 - Connect to GSM/GPRS or standard telephone modem.
 - Send/receive SMS messages
 - Remote access programming
 - RS485 Networking

RS232 (see note)
- 2 ports
- Galvanic isolation: None
- Voltage limits: ±20V

RS485 (see note)
- 2 ports
- Input voltage: -7 to +12V differential max.
- Cable type: Shielded twisted pair, in compliance with EIA RS485
- Galvanic isolation: None
- Baud rate: 110 – 57600 bps
- Nodes: Up to 32

Note:
RS232/RS485 is determined by jumper settings and wiring. Refer to the controller’s User Guide regarding communications.

I/O expansion port
- Up to 128 additional I/Os, including digital and analog I/Os, temperature and weight inputs and more (number of I/Os may vary according to expansion model)

Miscellaneous
- **Clock (RTC)**
 - Real-time clock functions (Date and time).

- **Battery back-up**
 - 7 years typical at 25°C, battery back-up for RTC and system data.

- **Battery**
 - Coin type, 3V lithium battery, CR2450

- **Weight**
 - 310g (10.9 oz.)

- **Operational temperature**
 - 0 to 50°C (32 to 122°F)

- **Storage temperature**
 - -20 to 60°C (-4 to 140°F)

- **Relative Humidity (RH)**
 - 5% to 95% (non-condensing)

- **Mounting method**
 - DIN-rail mounted (IP20/NEMA1)
 - Panel mounted (IP65/NEMA4X)
The tables below show how to set a specific jumper to change the functionality of the controller. To open the controller and access the jumpers, refer to the directions at the end of these specifications.

Important: Incompatible jumper settings and wiring connections may severely damage the controller.

<table>
<thead>
<tr>
<th>Jumper #</th>
<th>NPN</th>
<th>PNP*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Digital Inputs</td>
<td>JP3</td>
<td>A</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Jumper #</th>
<th>Voltage</th>
<th>Current</th>
<th>Digital*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analog 1/14</td>
<td>JP1</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>Analog 1/14</td>
<td>JP4</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>Analog 0/15</td>
<td>JP2</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>Analog 0/15</td>
<td>JP5</td>
<td>A</td>
<td>B</td>
</tr>
</tbody>
</table>

*Default factory setting

In this figure, the jumper settings will cause the controller to function as follows:
- Digital inputs: npn, 24V/DC inputs
- Analog input 1: Voltage input
- Analog input 0: Current input

Opening the controller enclosure
1. Locate the 4 slots on the sides of the enclosure
2. Using the blade of a flat-bladed screwdriver, gently pry off the back of the controller as shown in the figure below, exposing the controller's board.